《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 為電網注入綠色能源
為電網注入綠色能源
Alfred Hesener
飛兆半導體
摘要: 探討采用反激式拓撲的高效解決方案如何能夠滿足現今全球范圍的降低電源功耗之需求。
Abstract:
Key words :

    雖然能效和行業標準是光伏逆變器技術發展的主要推動力,但可靠性也是一個重要的因素。

    現代環保建筑的最新趨勢是藍色 ── 更正確來說應該是深藍色的太陽能板。即使是經濟危機和各國政府降低可再生能源的收購價格,也無阻這個發展勢頭。

    現在,這些太陽能發電系統的擁有者已不在乎太陽能板會不會影響建筑外觀,而是關注如何提高系統的發電量和可靠性。(不要忘記,在1990年代,所謂“能效”是指在整個系統壽命期間產生超過7000功率溫度周期(power temperature cycle)而已!)

    《為電網注入綠色能源》一文 (英文版) 將討論良好可靠的電源開關如何為綠色電源建立關鍵的基礎。

Photovoltaic systems can be found almost anywhere now. It all started in Germany, today the biggest market for PV systems and home of the biggest cell and inverter manufacturers, and at the same time enjoying a solar irradiation level similar to Alaska. These systems have seen tremendous technological development over the last years, both in panel efficiency as well as inverter technology. While the panel efficiency is driven largely by fundamental research in how to make a photo diode more efficient, the PV inverter is a fine example of power electronics at its best.

The main factors driving development in PV inverters really are efficiency, reliability, and compliance with existing and upcoming regulations, as well as improving the cost. At the same time, new developments in cell technology beyond monocrystalline silicon are forcing changes in the specifications too.

It is easy to see why efficiency matters the more kilowatt-hours the system puts out, the better. Let’s take an example of two 5-kWp systems, with the inverters having 95% and 96% efficiency. With an average working time of 1,200 h/year and an estimated yield of 80%, the input will be equivalent to 4,800 kWh, and at 1% improved efficiency the better system will produce around 50 kWh more, per year. At current feed-in tariffs this amounts to $34/year, or almost $700 over the expected lifetime of the system!

Reliability is also very important, since maintenance cost for remote systems can be quite expensive. This isn’t simply about the repair cost, since when the inverter is not working, no energy is being fed into the grid, so the yield loss also must be considered.

Today, four different panel types dominate the market:

The efficiency values are industry-average estimates for mass production, and as such can only give a relative indication. Today, around 85% of all panels are built with c-Si (see Fig. 1). But the other cell types are quickly catching on, driven by the fact that less raw materials are needed for making them.

Fig. 1. Monocrystalline silicon cell.

There is a drawback however – the new panel types have a higher ratio of no-load voltage to the voltage at maximum output power, and this implies that the inverter input section must be capable of supporting these higher voltages while at the same time showing good conversion efficiency at lower operating points.

The inverter is the main element between the panels and the grid. It provides proper loading to the cells, to draw the maximum power, and converts this energy into an ac output current.

Fig. 2. The maximum power point tracker helps the inverter draw the maximum power for the inverter to convert to ac output current.

To do this, a maximum power point (MPP) tracker (see Fig. 2) is used. The cells can be thought of as a voltage source with a non-linear source impedance, and the MPP tracker varies the loading until the product of voltage and current is maximized, by changing the input impedance of the boost converter.

In a second stage, this dc current is then converted into the required ac output current. For this, the inverter monitors the grid voltage and frequency, and its own output current, to appropriately control the inverter stage.

The inverter really works as an ac current source, driving the grid impedance. The intermediate voltage has to be higher than the desired peak output voltage, plus some margin – at 220 Vrms, the peak voltage is 308 V, so the intermediate dc bus voltage is usually chosen to be 350 to 390 V. This means the second inverter can act as a pure step-down circuit, simplifying the topology.

It is not uncommon to find several boost converters connected in parallel, to be able to connect multiple strings of panels. They all feed into one inverter.

Fig. 2. The maximum power point tracker helps the inverter draw the maximum power for the inverter to convert to ac output current.

Figure 3 shows an inverter, with the main PCB dedicated to the power conversion. In the center, power IGBTs can be seen under clips that press them to a heat sink. On the right, electrolytic caps are used as intermediate caps between the boost converter and the inverter, to store the energy needed to bridge individual 50 Hz cycles. This is a transformer-less inverter, and the two big inductors on the top are the output inductors.

Fig. 3. Small inverter for 3kWp output power.

Depending on safety requirements and, to some extent, the panel types and installation, a PV inverter may be required that provides isolation. This can be done with a transformer, where the inverter from above block diagram will drive the transformer with a high frequency, and then a second stage with rectification and dc to ac conversion is required to produce 50 or 60 Hz ac for feeding the grid. Unfortunately, this means the efficiency drops by 1% to 2%.

Topology choice

Figure 4 shows the classical topology of a boost converter, followed by a H-bridge. The transistors Q1 and Q2 are parallel, which is not uncommon in this stage and done simply to achieve lowest conduction losses.

Fig. 4. Typical boost converter followed by H-converter bridge.

This stage is followed by a capacitor, to stabilize the voltage that goes into the H-bridge and provide a certain holdup time. This capacitor will have to be an electrolytic capacitor in many cases, due to the size required, and this is probably the most important factor determining system reliability the inverter will see around 7,000 temperature cycles in a 20-year lifetime, and this is a huge strain for electrolytic caps.

In the inverter or dc-to-ac section of the system, some of the devices can be switched at line frequency whereas others are switched with the conversion frequency. If done cleverly, the first devices can be chosen for lowest conduction losses, like the non-punch-through (NPT) Fieldstop (FS) IGBTs from Fairchild Semiconductor, whereas the latter should be chosen for lowest switching losses.

Here, a combination of different IGBTs or even IGBTs and MOSFETs can help to improve the overall yield. And to properly drive the power switches, optically isolated gate drivers like Fairchild’s FOD3180 can be used, improving the system reliability where high dv/dt can suddenly occur, such as in the case of a grid fault.

The topology choice also implies a certain method to adapt the output behavior to the grid load. Here, new regulations are being implemented, forcing the inverters to contribute more to the local grid quality than before.

In certain areas, where many PV systems are connected, the phase lead of the output current of the inverters can lead to local breakdowns, simply due to the interaction between the inverters’ regulation loops. This needs fixing, by imposing certain limits on grid frequency as well as a requirement for the inverters to provide reactive power, that means, the current lagging the voltage.

The choice of best-in-class power switches like Fairchild’s SupreMOS can help to significantly improve efficiency, since in this application, the losses are still largely dominated by what is happening in the power switches. Additionally, further integration of subsystems into intelligent power modules is a candidate to further increase both efficiency and reliability. Due to the close proximity and ideal matching of driver and power switch, the best possible switching behavior can be realized repeatedly. ■

此內容為AET網站原創,未經授權禁止轉載。
热re99久久精品国产66热_欧美小视频在线观看_日韩成人激情影院_庆余年2免费日韩剧观看大牛_91久久久久久国产精品_国产原创欧美精品_美女999久久久精品视频_欧美大成色www永久网站婷_国产色婷婷国产综合在线理论片a_国产精品电影在线观看_日韩精品视频在线观看网址_97在线观看免费_性欧美亚洲xxxx乳在线观看_久久精品美女视频网站_777国产偷窥盗摄精品视频_在线日韩第一页
  • <strike id="ygamy"></strike>
  • 
    
      • <del id="ygamy"></del>
        <tfoot id="ygamy"></tfoot>
          <strike id="ygamy"></strike>
          亚洲视频每日更新| 国产视频在线观看一区| 99国内精品久久久久久久软件| 久久久综合网| 性欧美暴力猛交另类hd| 一区二区动漫| 国产一区二区三区在线观看免费视频| 久久久亚洲午夜电影| 国产精品v日韩精品| 久久九九热免费视频| 最新国产成人av网站网址麻豆| 国产毛片一区| 欧美一区国产一区| 亚洲在线观看免费视频| 欧美精品999| 在线观看国产一区二区| 一本一本久久a久久精品综合妖精| 国产精品jvid在线观看蜜臀| 欧美激情一区二区在线| 一区二区三区欧美在线| 一本色道久久综合亚洲二区三区| 久久精品国产99国产精品澳门| 久久精品五月婷婷| 国产午夜精品久久久久久免费视| 午夜久久久久久久久久一区二区| 午夜精品影院在线观看| 免费观看欧美在线视频的网站| 欧美特黄一级大片| 亚洲欧洲日本专区| 欧美精品久久久久久久| 精品动漫3d一区二区三区免费| 国产精品系列在线| 亚洲美女免费精品视频在线观看| 欧美福利一区| 欧美波霸影院| 国产精品久久久久免费a∨大胸| 国产精品美女久久久免费| 国产精品福利网| 亚洲成人在线免费| 免费国产一区二区| 国产精品一区二区三区乱码| 国产午夜精品久久久久久免费视| 亚洲精品影视在线观看| 国产精品视频yy9099| 欧美一区二区在线免费观看| 国产一区二区三区奇米久涩| 欧美精品在欧美一区二区少妇| 欧美日韩国产影片| 欧美电影免费观看高清完整版| 国产精品久久波多野结衣| 久久琪琪电影院| 99视频一区二区| 欧美精品免费在线观看| 亚洲女女女同性video| 精品成人a区在线观看| 欧美日韩亚洲在线| 国产日韩精品一区二区| 亚洲你懂的在线视频| 1024成人| 久久久亚洲综合| 久久久91精品| 亚洲视频1区2区| 小黄鸭精品密入口导航| 中文国产亚洲喷潮| 国产性色一区二区| 国产精品一区二区a| 国产欧美精品一区二区三区介绍| 亚洲欧洲午夜| 欧美一级成年大片在线观看| 国产欧美精品一区| 亚洲视频图片小说| 国产一区二区看久久| 欧美另类99xxxxx| 久久久www成人免费无遮挡大片| 亚洲一区二区三区影院| 韩国一区二区三区美女美女秀| 国产网站欧美日韩免费精品在线观看| 久久久久久久999| 国产精品狼人久久影院观看方式| 欧美日韩在线另类| 久久精品人人做人人综合| 欧美中文字幕视频| 欧美成人国产一区二区| 欧美日韩在线免费| 国产欧美日韩三区| 国产精品视频一二| 国产亚洲欧美激情| 久久综合九色综合久99| 国外成人在线视频| 欧美成人黄色小视频| 免费亚洲网站| 久久亚洲一区二区| 亚洲私人影院| 国产精品久久毛片a| 羞羞漫画18久久大片| 国产日产欧美a一级在线| 欧美视频在线观看免费| 香蕉精品999视频一区二区| 亚洲午夜黄色| 99视频有精品| 久久一区二区三区国产精品| 久久三级福利| 国产婷婷精品| 国产区在线观看成人精品| 99国产精品一区| 久久综合网hezyo| 国产伦精品一区二区三区视频孕妇| 国产精品成人观看视频国产奇米| 欧美顶级少妇做爰| 激情婷婷欧美| 伊人成综合网伊人222| 国产一区二区三区免费不卡| 免费欧美在线| 亚洲私人影吧| 欧美伦理a级免费电影| 一区二区三区视频在线播放| 久久免费精品视频| 亚洲一区图片| 欧美理论在线播放| 国产日产亚洲精品| 欧美激情精品久久久久久变态| 欧美日韩欧美一区二区| 亚洲国产欧美精品| 中文高清一区| 久久精品国产一区二区三区免费看| 亚洲激情图片小说视频| 日韩视频一区二区| 亚洲女性喷水在线观看一区| 欧美国产另类| 欧美日韩免费在线观看| 一本色道久久综合亚洲精品高清| 国产欧美精品| **欧美日韩vr在线| 亚洲欧美日韩在线高清直播| 亚洲国产美女久久久久| 国产精品高潮呻吟久久av无限| 欧美bbbxxxxx| 激情视频一区二区| 亚洲国产精品va在线观看黑人| 欧美日韩国产限制| 在线观看一区| 欧美精品激情在线观看| 可以看av的网站久久看| 激情五月***国产精品| 久久精品一本久久99精品| 亚洲欧美日韩国产精品| 国产亚洲欧美一级| 加勒比av一区二区| 亚洲精品久久久久久久久久久久久| 亚洲精品在线观看视频| 亚洲成人自拍视频| 久久九九免费视频| 久久亚洲国产精品一区二区| 免费欧美日韩| 欧美三级在线播放| 老司机免费视频久久| 欧美成人伊人久久综合网| 欧美一区二区精品| 亚洲少妇最新在线视频| 久久精品国产一区二区电影| 亚洲午夜久久久久久久久电影网| 国产一区二区三区成人欧美日韩在线观看| 欧美调教视频| 亚洲自拍16p| 国产日产亚洲精品| 狠狠色伊人亚洲综合网站色| 欧美日韩中文字幕在线| 精品成人乱色一区二区| 免费高清在线一区| 国内偷自视频区视频综合| 韩国三级在线一区| 在线欧美不卡| 亚洲女人小视频在线观看| 亚洲字幕一区二区| 久久综合激情| 老司机精品视频一区二区三区| 激情av一区二区| 亚洲免费播放| 麻豆精品91| 欧美激情导航| 欧美日韩一视频区二区| 久久免费观看视频| 国产精品久久精品日日| 亚洲欧美中文日韩v在线观看| 一区二区三区国产在线| 欧美日韩一区在线观看| 亚洲乱码国产乱码精品精| 夜夜嗨网站十八久久| 国产精品99久久久久久久vr| 欧美一级理论片| 乱码第一页成人| 久久人人97超碰国产公开结果| 亚洲精品美女久久久久| 欧美精品一卡二卡| 久久婷婷国产综合国色天香| 久久久久国产精品人| 欧美电影免费观看网站| 久久精品国产久精国产思思| 亚洲国产精品一区二区尤物区| 亚洲无限乱码一二三四麻| 性久久久久久久久| 国产精品久久久久久久app| 欧美日韩一区在线播放| 黄色国产精品一区二区三区| 欧美成人免费网| 亚洲国产91| 亚洲自拍都市欧美小说| 欧美精品久久久久久久| 国产亚洲欧美另类中文| 亚洲免费在线看| 亚洲高清视频一区| 欧美日产在线观看| 91久久精品www人人做人人爽| 久久经典综合| 国产日韩综合一区二区性色av| 欧美视频亚洲视频| 久久99在线观看| 亚洲精品资源美女情侣酒店| 国产精品黄色| 欧美日韩国产在线一区| 性色一区二区| 亚洲国产欧美日韩另类综合| 午夜精彩视频在线观看不卡| 国产精品久久久999| 亚洲第一在线综合网站| 亚洲国产成人久久综合一区| 国产精品亚洲精品| 国产一区久久久| 亚洲国产精选| 欧美激情视频一区二区三区不卡| 久久久久久久久综合| 亚洲精品一区在线观看| 欧美国产日韩视频| 亚洲欧美日韩精品久久| 国产精品一区免费在线观看| 亚洲人妖在线| 亚洲欧美日韩在线观看a三区| 欧美日韩中字| 99re66热这里只有精品4| 欧美一区二区视频在线观看2020| 欧美日本亚洲韩国国产| 国产精品国产自产拍高清av王其| 亚洲电影av在线| 欧美成人一区二区三区片免费| 国内精品写真在线观看| 亚洲国产欧美一区二区三区丁香婷| 免费不卡视频| 欧美伊人久久大香线蕉综合69| 免费国产一区二区| 亚洲国产精品福利| 欧美日韩999| 亚洲永久免费视频| 欧美v亚洲v综合ⅴ国产v| 欧美日韩精品在线视频| 欧美日韩成人网| 国产精品网站在线观看| 国产精品久久999| 亚洲精品免费电影| 亚洲视频导航| 欧美激情中文字幕一区二区| 国产精品久久久亚洲一区| 亚洲午夜电影| 韩国av一区| 在线视频亚洲| 欧美三级午夜理伦三级中视频| 在线成人h网| 欧美日韩国产精品一区| 国产一区二区三区av电影| 久久综合图片| 亚洲激情一区二区| 欧美日韩一区国产| 亚洲精选久久| 国内免费精品永久在线视频| 亚洲网友自拍| 一区二区在线视频播放| 欧美在线视频一区二区| 欧美国产日韩a欧美在线观看| 亚洲免费观看在线观看| 久久精品官网| 久久久av水蜜桃| 亚洲久久一区| 亚洲欧美日韩国产一区二区三区| 亚洲精品中文字幕在线| 欧美日韩在线视频观看| 亚洲欧美亚洲| 在线日韩av| 欧美成人免费在线视频| 亚洲一区综合| 亚洲欧美日韩国产成人| 欧美亚洲免费在线| 国产欧美日韩不卡| 国产精品稀缺呦系列在线| 欧美在线视频观看免费网站| 欧美三级第一页| 蜜桃精品久久久久久久免费影院| 亚洲午夜一区二区| 亚洲电影成人| 亚洲第一精品福利| 午夜视频一区二区| 久久精品国产久精国产一老狼| 亚洲精品小视频在线观看| 久久久不卡网国产精品一区| 亚洲欧美一区二区精品久久久| 老司机亚洲精品| 欧美亚洲午夜视频在线观看| 在线精品一区| 国产欧美欧洲在线观看| 一本久久a久久免费精品不卡| 麻豆视频一区二区| 亚洲系列中文字幕| 国产亚洲欧美一级| 欧美视频第二页| 亚洲黄色一区二区三区| 91久久久久久国产精品| 国模大胆一区二区三区| 亚洲国产精品视频| 午夜宅男久久久| 国产午夜久久| 久久一区二区视频| 国产日韩欧美在线看| 久久精品1区| 亚洲精品视频在线看| 亚洲精品国产精品国产自| 一区二区三区欧美在线| 欧美14一18处毛片| 欧美日本不卡视频| 欧美激情1区2区3区| 欧美日韩中文另类|