《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 電路斷路器提供過流和精確過壓保護
電路斷路器提供過流和精確過壓保護
摘要: 僅需要少數廉價元器件,圖1中的電路斷路器響應過流和過壓故障。電路的核心處,一個可調高精度的并聯穩壓器D2,提供參考電壓、比較器和開集電極輸出,所有功能都整合到三管腳的封裝中。
Abstract:
Key words :

  一個簡單的電路斷路器提供精密過壓和過流保護。

  僅需要少數廉價元器件,圖1中的電路斷路器響應過流和過壓故障。電路的核心處,一個可調高精度的并聯穩壓器D2,提供參考電壓、比較器和開集電極輸出,所有功能都整合到三管腳的封裝中。

電路斷路器響應過流和過壓故障

  圖2顯示ZR431, D1的簡化電路圖。在參考輸入處的電壓與內部電壓基準VREF相比較,名義上是2.5V。在斷電狀態下,參考電壓為0V,輸出晶體管處于截止狀態,陰極電流小于0.1µA。隨著參考電壓接近VREF,陰極電流緩慢增加;參考電壓超過2.5V的閾值時,裝置完全導通,陰極電壓降至大約為2V。在這種情況下,陰極和電源之間的阻抗決定陰極電流;陰極電流在50µA至100mA范圍內。

ZR431, D1的簡化電路圖

  在正常工作情況下,D2的輸出晶體管截止,而且P溝道MOSFET(Q4)的門極通過R9,以至于MOSFET是全面增強的,允許負載電流ILOAD從電源–VS通過R6流到負載處。Q2和電流敏感電阻R6監測ILOAD的幅值,其中Q2的基極和發射極電壓VBE是ILOAD×R6。對于ILOAD的正常值,VBE低于Q2偏置所需的0.6V電壓值,

 

這種情況下晶體管對R3 和R4連結處的電壓也沒有影響。因為D2參考輸入的輸入電流小于1µA,通過R5可忽略壓降,而參考電壓實際上是R4上的電壓。

 

  當ILOAD超過最大允許值時發生過載情況,R6上的電壓增大導致基極-發射極電壓足夠大到導通Q2。因此,R4上的電壓和參考電壓上拉到VS,造成D2的陰極電壓降至大約2V。D2的輸出晶體管通過R7 和 R8的瀉放電流,因此偏置Q3導通。Q4的柵極電壓通過Q3有效地控制電源,MOSFET從而截止。與此同時,Q3的源電流通過D1流到R4,從而拉動R4的電壓,使二極管電壓降到低于電源。由于Q2的基極-發射極的電壓為0V而截止,因此沒有負載電流流過R6。D2的輸出晶體管鎖存,電路仍處于故障狀態,其中的負載電流為0A。選擇R6的阻值時要確保在負載電流的最高允許值的條件下,Q2的基極-發射極電壓大約低于0.5V。

  對于過流情況,該斷路器還對電源的非正常大電壓起作用。當負載電流在正常范圍內Q2處于截止狀態時,電源幅值以及R3和R4的值,穿過電源軌形成潛在分壓器,決定參考輸入處的電壓。電源電壓發生過壓情況,R4的電壓超過2.5V參考電壓,D2的輸出晶體管導通。一旦再次發生,Q3導通,MOSFET(Q4)關閉,負載與危險瞬間情況有效隔絕。

  現在電路仍然處在不定狀態一直到復位。在這些條件下,Q3 控制 Q4的柵極電源電壓大約接近0V,從而保護MOSFET自身擺脫過多的柵源電壓。忽視R5微乎其微的電壓值,你可以看到參考電壓為VS×R4/(R3+R4)。因為,當參考電壓超過2.5V時,D2的輸出變高,你可以變換方程為R3=[(VST/2.5)–1]×R4,其中VST是所需的電源跳閘值。例如,如果R4值為10kΩ,18V的跳閘電壓需要R3阻值為62kΩ。R3 和 R4選擇適當的阻值來設置需要的跳閘電壓值,確保它們足夠大以至于潛在分壓器不會過度負荷供應。同樣,由于輸入參考電流避免導致誤差的值。

  當你第一次對電路供電,會發現電容、燈泡燈絲、汽車等類似具有大浪涌電流的載荷可以使斷路器跳閘,即使正常的、穩態運行的電流低于R6所設置的水平。解決這個問題的一個辦法,就是增加電容C2,降低參考輸入處電壓的變化率。不過,雖然簡單,但這種方式有一個嚴重的缺點,因為它減緩了電路對于真正過流故障的響應時間。

  器件C1,、R1,、R2和Q1提供了另一種解決方法。當電壓變大時,C1初始時放電,導致Q1導通,從而控制參考輸入為0V,防止來自跳閘電路的涌電流。然后C1通過R1 和R2 充電,直到Q1最后截止,釋放參考輸入的控制,并允許電路快速反應過流瞬變。此時C1、R1和 R2的值,電路允許涌電流在大約400毫秒內平息下來。選擇其它值可以使電路容納適用于負載的任何時限的涌電流。一旦你的電路斷路器跳閘,再次供電或者按下復位開關S1則可以復位。如果你的應用不需要涌電流保護,干脆省略C1、R1和 R2,并在參考輸入和0V之間接入S1。

  在選擇元器件時,確保所有的元器件妥善適應它們將遇到的電壓和電流水平。雙極晶體管沒有特別的要求,雖然這些晶體管,尤其Q2和Q3,應具有高電流增益,Q4應該有較低的阻值,并且Q4的最大漏源極電壓和柵源極電壓必須與最高電源電壓相同。你可以為D1使用幾乎任何一個小信號的二極管。作為一項預防措施,如果有非常大的瞬態電壓,適當的齊納二極管D3 和D4保護D2可能是有必要的。

  雖然該電路利用431器件,是市面從不同廠家都有的廣泛產品,對于D2,并不是所有這些產品都表現的一模一樣。舉例來說,測試了德州儀器的TL431CLP和Zetex公司的ZR431CLP,顯示當參考電壓為0V時兩個器件的陰極電流是0A。但是,逐步把參考電壓從2.2V提高到2.45V,對于TL431CLP而言,陰極電流由220提高到380µA,而ZR431CLP是從 23到28µA—兩者大概有10種區別。在選擇R7 和R8的阻值時,你必須考慮這兩種不同大小的陰極電流的區別。

 

  你所使用的D2類型和你選擇的R7 和R8的阻值也對響應時間有影響。TL431CLP的一個測試電路,其中R7 是1kΩ,R8是4.7kΩ,對于瞬態過流的響應時間是550ns。用ZR431CLP更換TL431CLP,其響應時間約為1µs。增加R7 和R8的阻值分別到10和47kΩ,則響應時間為2.8µs。注意到TL431CLP產生較大的陰極電流需要相應阻值較小的R7和R8。

  為了設定過壓跳閘水平在18V,R3 和 R4必須具備阻值分別為62和10kΩ。測試電路實驗得出如下結果:D2采用TL431CLP,電路在17.94V跳閘,D2采用ZR431CLP,跳閘電壓為18.01V。依靠Q2的基極-發射極電壓,過流檢測機制的精度低于過壓功能。然而,用一個高端電流檢測放大器產生與負載電流成正比的地電流來取代R6和 Q2,過流檢測精度將大大提高。這些器件可從Linear技術公司、Maxim、德州儀器公司和Zetex等公司得到。

  電路斷路器被證明是很有用的應用,例如汽車系統,需要過流檢測,以防止錯誤載荷;還需要過壓保護,屏蔽敏感電路受到高能負載瞬變時的影響。除了流過R3 和R4的小電流,以及D2的陰極電流,在正常、非跳閘情況下,對于電源,電路沒有電流流出。

  英文原文:

  Circuit breaker provides overcurrent and precise overvoltage protection

  A simple circuit breaker delivers precision overvoltage protection and overcurrent protection.

  Anthony H Smith, Scitech, Bedfordshire, England; Edited by Brad Thompson and Fran Granville -- EDN, 6/7/2007

  Requiring only a handful of inexpensive components, the circuit breaker in Figure 1 responds to both overcurrent- and overvoltage-fault conditions. At the heart of the circuit, D2, an adjustable, precision, shunt-voltage regulator, provides a voltage reference, comparator, and open-collector output, all integrated into a three-pin package.

  Figure 2 shows a simplified view of the ZR431, D1. The voltage appearing at the reference input is compared with the internal voltage reference, VREF, nominally 2.5V. In the off state, when the reference voltage is 0V, the output transistor is off, and the cathode current is less than 0.1 µA. As the reference voltage approaches VREF, the cathode current increases slightly; when the reference voltage exceeds the 2.5V threshold, the device fully switches on, and the cathode voltage falls to approximately 2V. In this condition, the impedance between the cathode and the supply voltage determines the cathode current; the cathode current can range from 50 µA to 100 mA.

 

  Under normal operating conditions, D2’s output transistor is off, and the gate of P-channel MOSFET Q4 goes through R9, such that the MOSFET is fully enhanced, allowing the load current, ILOAD, to flow from the supply voltage, –VS, through R6 into the load. Q2 and current-sense resistor R6 monitor the magnitude of ILOAD, where Q2’s base-emitter voltage, VBE, is ILOAD×R6. For normal values of

 

ILOAD, VBE is less than the 0.6V necessary to bias Q2 on, such that the transistor has no effect on the voltage at the junction of R3 and R4. Because the input current at D2’s reference input is less than 1 µA, negligible voltage drops across R5, and the reference voltage is effectively equal to the voltage on R4.

 

  In the event of an overload when ILOAD exceeds its maximum permissible value, the increase in voltage across R6 results in sufficient base-emitter voltage to turn on Q2. The voltage on R4 and, hence, the reference voltage now pull up toward VS, causing D2’s cathode voltage to fall to approximately 2V. D2’s output transistor now sinks current through R7 and R8, thus biasing Q3 on. Q4’s gate voltage now effectively clamps to the supply voltage through Q3, and the MOSFET turns off. At the same instant, Q3 sources current into R4 through D1, thereby pulling the voltage on R4 to a diode drop below the supply voltage. Consequently, no load current flows through R6 because Q2, whose base-emitter voltage is now 0V, has turned off. As a result, no load current flows through R6, D2’s output transistor latches on, and the circuit remains in its tripped state in which the load current is 0A. When choosing a value for R6, ensure that Q2’s base-emitter voltage is less than approximately 0.5V at the maximum permissible value of the load current.

  As well as responding to overcurrent conditions, the circuit breaker also reacts to an abnormally large value of the supply voltage. When the load current lies within its normal range and Q2 is off, the magnitude of the supply voltage and the values of R3 and R4, which form a potential divider across the supply rails, determine the voltage at the reference input. In the event of an overvoltage at the supply voltage, the voltage on R4 exceeds the 2.5V reference level, and D2’s output transistor turns on. Once again, Q3 turns on, MOSFET Q4 switches off, and the load becomes effectively isolated from the dangerous transient.

 

  The circuit now remains in its tripped state until reset. Under these conditions, Q3 clamps Q4’s gate-source voltage to roughly 0V, thereby protecting the MOSFET itself from excessive gate-source voltages. Ignoring the negligibly small voltage across R5, you can see that the reference voltage is VS×R4/(R3+R4) in volts. Because D2’s output turns on when the reference voltage exceeds 2.5V, you can rearrange the equation as R3=[(VST/2.5)–1]×R4 in ohms, where VST is the required supply-voltage trip level. For example, if R4 has a value of 10 kΩ, a trip voltage of 18V would require R3 to have a value of 62 kΩ. When choosing values for R3 and R4 to set the desired trip voltage, ensure that they are large enough that the potential divider will not excessively load the supply. Similarly, avoid values that could result in errors due to the reference-input current.

  When you first apply power to the circuit, you’ll find that capacitive, bulb-filament, motor, and similar loads having large inrush current can trip the circuit breaker, even though their normal, steady-state operating current is below the trip level that R6 sets. One way to eliminate this problem is to add capacitor C2, which slows the rate of change of the voltage at the reference input. However, although simple, this approach has a serious disadvantage in that it slows the circuit’s response time to a genuine overcurrent-fault condition.   Components C1, R1, R2, and Q1 provide an alternative solution. On power- up, C1 initially discharges, causing Q1 to turn on, thereby clamping the reference input to 0V and preventing the inrush current from tripping the circuit. C1 then charges through R1 and R2 until Q1 eventually turns off, releasing the clamp at the reference input and allowing the circuit to respond rapidly to overcurrent transients. With the values of C1, R1, and R2, the circuit allows approximately 400 msec for the inrush current to subside. Selecting other values allows the circuit to accommo

 

date any duration of inrush current you apply to a load. Once you trip the circuit breaker, you can reset it either by cycling the power or by pressing S1, the reset switch, which connects across C1. If your application requires no inrush protection, simply omit C1, R1, R2, and Q1 and connect S1 between the reference input and 0V.

 

 

  When choosing components, make sure that all parts are properly rated for the voltage and current levels they will encounter. The bipolar transistors have no special requirements, although these transistors, especially Q2 and Q3, should have high current gain, Q4 should have low on-resistance, and Q4’s maximum drain-to-source and gate-to-source voltages must be commensurate with the maximum value of supply voltage. You can use almost any small-signal diode for D1. As a precaution, it may be necessary to fit zener diodes D3 and D4 to protect D2 if extremely large transient voltages are likely.

  Although this circuit uses the 431 device, which is widely available from different manufacturers, for D2, not all of these parts behave in exactly the same way. For example, tests on a Texas Instruments TL431CLP and a Zetex ZR431CL reveal that the cathode current is 0A for both devices when the reference voltage is 0V. However, gradually increasing the reference voltage from 2.2 to 2.45V produces a change in cathode current ranging from 220 to 380 µA for the TL431CLP and 23 to 28 µA for the ZR431CL—roughly a factor of 10 difference between the two devices. You must take this difference in the magnitude of the cathode current into account when selecting values for R7 and R8.

 

  The type of device you use for D2 and the values you select for R7 and R8 can also have an effect on response time. A test circuit with a TL431CLP, in which R7 is 1 kΩ and R8 is 4.7 kΩ, responds within 550 nsec to an overcurrent transient. Replacing the TL431CLP with a ZR431CL results in a response time of approximately 1 µsec. Increasing R7 and R8 by an order of magnitude to 10 and 47 kΩ, respectively, produces a response time of 2.8 µsec. Note that the relatively large cathode current of the TL431CLP requires correspondingly small values of R7 and R8.

  To set the overvoltage-trip level at 18V, R3 and R4 must have values of 62 and 10 kΩ, respectively. The test circuit then produces the following results: Using a TL431CLP for D2, the circuit trips at 17.94V, and, using a ZR431CL for D2, the trip level is 18.01V. Depending on Q2’s base-emitter voltage, the overcurrent-detection mechanism is less precise than the overvoltage function. However, the overcurrent-detection accuracy greatly improves by replacing R6 and Q2 with a high-side current-sense amplifier that generates a ground-referred current proportional to load current. These devices are available from Linear Technology, Maxim, Texas Instruments, Zetex, and others.

  The circuit breaker should prove useful in applications such as automotive systems that require overcurrent detection to protect against faulty loads and that also need overvoltage protection to shield sensitive circuitry from high-energy-load-dump transients. Other than the small current flowing in R3 and R4 and the current in D2’s cathode, the circuit draws no current from the supply in its normal, untripped state.

 

此內容為AET網站原創,未經授權禁止轉載。
热re99久久精品国产66热_欧美小视频在线观看_日韩成人激情影院_庆余年2免费日韩剧观看大牛_91久久久久久国产精品_国产原创欧美精品_美女999久久久精品视频_欧美大成色www永久网站婷_国产色婷婷国产综合在线理论片a_国产精品电影在线观看_日韩精品视频在线观看网址_97在线观看免费_性欧美亚洲xxxx乳在线观看_久久精品美女视频网站_777国产偷窥盗摄精品视频_在线日韩第一页
  • <strike id="ygamy"></strike>
  • 
    
      • <del id="ygamy"></del>
        <tfoot id="ygamy"></tfoot>
          <strike id="ygamy"></strike>
          欧美亚洲一级片| 精久久久久久| 狼狼综合久久久久综合网| 亚洲国内欧美| 欧美日韩亚洲高清| 久久久久久久久久久一区| 欧美资源在线观看| 午夜精品久久久| 亚洲尤物在线视频观看| 亚洲国产综合91精品麻豆| 久久九九国产精品怡红院| 牛牛影视久久网| 国产精品久久久久9999高清| 亚洲丰满在线| 欧美jizz19hd性欧美| 国产午夜亚洲精品理论片色戒| 久久精品亚洲乱码伦伦中文| 国产精品久久久一区麻豆最新章节| 欧美无乱码久久久免费午夜一区| 亚洲精品久久7777| 亚洲第一综合天堂另类专| 最新国产精品拍自在线播放| 久久艳片www.17c.com| 欧美一区二区三区久久精品茉莉花| 欧美日韩亚洲一区二| 一区在线观看| 久久精品视频va| 国产精品高潮呻吟久久| 亚洲无吗在线| 国产精品久久久久永久免费观看| 亚洲欧美日本伦理| 欧美在线观看网址综合| 亚洲深夜福利在线| 激情成人亚洲| **性色生活片久久毛片| 国产伦精品一区二区三区高清版| 国产专区一区| 欧美精品 国产精品| 亚洲午夜精品在线| 国产三级欧美三级日产三级99| 国产一区二区三区免费在线观看| 国产精品久久影院| 久久国产精品久久w女人spa| 欧美视频一区二区三区| 欧美一区1区三区3区公司| 国产精品yjizz| 国产精品影片在线观看| 久久精品免费| 一本一本久久a久久精品牛牛影视| 亚洲最黄网站| 久久深夜福利| 国产精品久久久久av免费| 9久草视频在线视频精品| 欧美va亚洲va国产综合| 亚洲精品久久久久久久久久久| 一区二区日韩精品| 国产精品日韩二区| 巨胸喷奶水www久久久免费动漫| 欧美精品手机在线| 欧美三级日韩三级国产三级| 香蕉av777xxx色综合一区| 久久精品91久久久久久再现| 亚洲激情视频在线播放| 国产精品高潮呻吟久久av无限| 久久伊人精品天天| 国产精品露脸自拍| 欧美黄在线观看| 国产欧美一区在线| 亚洲一区二区久久| 在线不卡免费欧美| 在线观看中文字幕不卡| 在线观看91久久久久久| 美国十次了思思久久精品导航| 亚洲精品久久久久久久久久久久| 日韩视频三区| 亚洲欧美日本国产有色| 久久人人97超碰国产公开结果| 在线观看国产成人av片| 欧美视频一区二区三区四区| 欧美视频免费| 亚洲精品一区二区三区四区高清| 久久精彩免费视频| 一区二区日韩欧美| 国产精品一二三视频| av成人免费在线观看| 亚洲午夜免费福利视频| 美女精品国产| 欧美激情成人在线| 欧美婷婷六月丁香综合色| 99视频在线精品国自产拍免费观看| 国产私拍一区| 欧美日韩在线精品一区二区三区| 国产亚洲美州欧州综合国| 另类酷文…触手系列精品集v1小说| 欧美大胆a视频| 国产精品一区二区三区乱码| 欧美国产一区二区三区激情无套| 亚洲精品美女在线观看| 欧美黄色大片网站| 欧美成va人片在线观看| 亚洲国产精品免费| 亚洲美女精品久久| 99re热这里只有精品免费视频| 欧美视频在线免费| 久久三级福利| 亚洲欧美日韩在线综合| 久久在线免费视频| 国产精品亚洲一区| 香蕉久久夜色| 国产欧美日韩在线观看| 亚洲一区在线视频| 韩国v欧美v日本v亚洲v| 欧美日韩性生活视频| 免费观看成人www动漫视频| 国产精品一区二区在线观看不卡| 激情婷婷亚洲| 欧美日韩一区二区免费视频| 狠狠88综合久久久久综合网| 欧美激情视频一区二区三区不卡| 久久综合久久综合久久综合| 久久久久一本一区二区青青蜜月| 亚洲欧美成人一区二区在线电影| 欧美性一二三区| 日韩视频二区| 精品白丝av| 久久成人在线| 亚洲美女尤物影院| 精品成人a区在线观看| 欧美成人小视频| 蜜臀91精品一区二区三区| 欧美一区观看| 在线 亚洲欧美在线综合一区| 久久久久久久999精品视频| 美国成人毛片| 国产农村妇女精品| 韩日精品视频一区| 亚洲欧洲日韩女同| 亚洲一区二区视频| 一区在线观看| 亚洲大片在线| 国产精品亚洲激情| 国产一区二区电影在线观看| 久久精品最新地址| 欧美精品高清视频| 亚洲黄色视屏| 亚洲欧美综合| 国产精品有限公司| 国产综合久久久久久鬼色| 欧美一区二区三区视频| 亚洲国产裸拍裸体视频在线观看乱了中文| 国产精品普通话对白| 久久天天躁狠狠躁夜夜av| 免费成人在线观看视频| 欧美在线免费看| 欧美影院成年免费版| 免费黄网站欧美| 久久国产精品一区二区三区| 韩国免费一区| 久久久久久久一区二区三区| 性色av一区二区三区红粉影视| 欧美日韩精品免费观看视频| 国产毛片精品视频| 极品少妇一区二区三区精品视频| 欧美日韩网站| 欧美欧美午夜aⅴ在线观看| 亚洲男人的天堂在线观看| 亚洲成人中文| 久久久久成人精品| 欧美护士18xxxxhd| 欧美精品久久久久a| 国产视频一区二区三区在线观看| 西西裸体人体做爰大胆久久久| 亚洲乱码精品一二三四区日韩在线| 99视频一区| 国产精品初高中精品久久| 欧美另类久久久品| 欧美一区二区在线| 久久久久在线观看| 欧美激情女人20p| 国产精品美女诱惑| 久久亚裔精品欧美| 蜜臀av性久久久久蜜臀aⅴ| 欧美午夜激情在线| 欧美好吊妞视频| 篠田优中文在线播放第一区| 在线中文字幕不卡| 亚洲电影免费观看高清完整版在线观看| 欧美视频在线播放| 一区二区三区在线看| 亚洲毛片av| 国户精品久久久久久久久久久不卡| 久久综合中文色婷婷| 欧美sm视频| 红桃视频一区| 亚洲精品久久久久久久久久久| 国产伦精品一区二区三区视频孕妇| 亚洲欧洲在线免费| 国产日韩精品一区| 美女脱光内衣内裤视频久久影院| 亚洲另类视频| 欧美日韩成人网| 久久亚洲午夜电影| 欧美片第一页| 亚洲美女毛片| 亚洲成人在线免费| 欧美激情第8页| 亚洲电影免费观看高清完整版在线观看| 欧美在线综合| 欧美第十八页| 久久久免费观看视频| 亚洲免费视频成人| 鲁大师成人一区二区三区| 国产精品久久77777| 国产日韩一区二区三区| 午夜精品偷拍| 久久五月激情| 尹人成人综合网| 久久成人一区| 欧美日韩亚洲综合| 欧美激情亚洲自拍| 久久久久久久久蜜桃| 一本色道久久加勒比88综合| 久久精品网址| 午夜一级在线看亚洲| 久热精品视频在线观看一区| 国产日韩欧美精品| 国产欧美视频一区二区三区| 免费人成精品欧美精品| 欧美日韩精品一区二区三区四区| 久久久亚洲精品一区二区三区| 欧美主播一区二区三区| 国产精品视频一二三| 亚洲一区二区毛片| 欧美精品一区二区三区在线播放| 亚洲图片你懂的| 欧美伦理91i| 欧美日韩国产专区| 久久精品国产69国产精品亚洲| 亚洲特级毛片| 欧美大色视频| 亚洲男女自偷自拍图片另类| 国产亚洲欧美另类一区二区三区| 国产一区二区久久久| 欧美精品自拍偷拍动漫精品| 欧美日韩不卡在线| 欧美久久久久免费| 国内伊人久久久久久网站视频| 亚洲香蕉伊综合在人在线视看| 91久久夜色精品国产九色| 美乳少妇欧美精品| 亚洲视频视频在线| 伊人久久亚洲影院| 国产精品一区二区久久精品| 一本一本久久a久久精品综合妖精| 欧美有码在线观看视频| 国产亚洲女人久久久久毛片| 一区二区三区高清不卡| 久久影院午夜论| 欧美伦理视频网站| 国产精品欧美日韩一区| 亚洲国产另类 国产精品国产免费| 欧美日韩国产丝袜另类| 国产精品一区二区女厕厕| 美女国内精品自产拍在线播放| 亚洲精选国产| 99亚洲一区二区| 亚洲一区二区三区影院| 亚洲精品一二三区| 最新日韩av| 一本久久a久久免费精品不卡| 亚洲高清一区二| 国产精品免费小视频| 欧美日韩免费观看一区二区三区| 亚洲图色在线| 国产日韩av在线播放| 美女视频黄免费的久久| 美女精品在线| 欧美一区三区二区在线观看| 欧美一级电影久久| 在线成人h网| 久久先锋影音av| 亚洲国产aⅴ天堂久久| 国产精品盗摄久久久| 国产精品区一区| 麻豆91精品| 亚洲综合精品自拍| 欧美高清在线视频观看不卡| 一本大道久久精品懂色aⅴ| 欧美日产国产成人免费图片| 亚洲一区国产一区| 99视频热这里只有精品免费| 国产精品久久久久毛片软件| 午夜精品美女自拍福到在线| 亚洲午夜激情免费视频| 国产一区二区三区精品久久久| 欧美激情一区二区三区在线视频观看| 国产精品久久福利| 久久久久国产一区二区三区| 亚洲色图制服丝袜| 葵司免费一区二区三区四区五区| 欧美激情精品久久久久久大尺度| 久久久久久久91| 国产精品久久久久久亚洲毛片| 国产精品国产精品国产专区不蜜| 国产精品www网站| 欧美日韩一区综合| 欧美日韩亚洲高清| 亚洲一区二区三区高清不卡| 久久综合久久久久88| 欧美日韩视频免费播放| 久久综合给合久久狠狠狠97色69| 亚洲电影av在线| 在线观看中文字幕不卡| 亚洲伊人伊色伊影伊综合网| 一个色综合导航| 国内偷自视频区视频综合| 激情综合亚洲| 国产精品电影在线观看| 亚洲天堂偷拍| 午夜在线a亚洲v天堂网2018| 久久久精品免费视频| 麻豆av福利av久久av| 亚洲一区在线免费| 狠狠色伊人亚洲综合网站色| 在线观看视频免费一区二区三区| 国产日韩免费| 久久精品久久99精品久久| 欧美日韩伦理在线免费|