《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 基于深度神經網絡的個性化推薦系統研究
基于深度神經網絡的個性化推薦系統研究
2019年電子技術應用第1期
字云飛,李業麗,孫華艷
北京印刷學院 信息工程學院,北京102600
摘要: 深度神經網絡由于結構類似于生物神經網絡,因此擁有高效、精準抽取信息深層隱含特征的能力和能夠學習多層的抽象特征表示,且能夠對跨域、多源、異質的內容信息進行學習等優勢。提出了一種基于多用戶-項目結合深度神經網絡抽取特征、自學習等優勢實現信息個性化推薦的模型,該模型通過對輸入多源異構數據特征進行深度神經網絡學習、抽取,再融合協同過濾中的廣泛個性化產生候選集,然后通過二次模型學習產生排序集,實現精準、實時、個性化推薦。通過真實數據集對模型評估實驗,實驗結果表明,該模型能夠很好地學習、抽取用戶隱特征,并且能夠一定程度上解決傳統推薦系統稀疏性、新物品等問題,同時實現了更加精準、實時、個性化的推薦。
中圖分類號: TN311
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.181396
中文引用格式: 字云飛,李業麗,孫華艷. 基于深度神經網絡的個性化推薦系統研究[J].電子技術應用,2019,45(1):14-18,22.
英文引用格式: Zi Yunfei,Li Yeli,Sun Huayan. Research of personalized recommendation system based on deep neural network[J]. Application of Electronic Technique,2019,45(1):14-18,22.
Research of personalized recommendation system based on deep neural network
Zi Yunfei,Li Yeli,Sun Huayan
School of Information Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China
Abstract: The deep neural network is similar to the biological neural network, so it has the ability of high efficiency and accurate extraction of the deep hidden features of information, can learn multiple layers of abstract features, and can learn more about cross-domain, multi-source and heterogeneous content information. This paper presents an extraction feature based on multi-user-project combined deep neural network, self-learning and other advantages to achieve the model of personalized information. This model does deep neural network self-learning and extraction based on the input multi-source heterogeneous data characteristics,fuses collaborative filtering wide personalization to generate candidate sets, and then through two times of model self-learning produces a sort set. Finally,it can achieve accurate, real-time, and personalized recommendations. The experimental results show that the model can self-learn and extract the user′s implicit feature well, and it can solve the problems of sparse and new items of traditional recommendation system to some extent, and realize more accurate, real-time and personalized recommendation.
Key words : deep neural network;personalized recommendation;candidate set;sort set;multi-view

0 引言

    近幾年,深度學習在人工智能、機器學習中取得了飛躍式的突破,特別是在語音識別和圖像識別等領域[1-3]。其中,深度神經網絡由于結構類似于生物神經網絡,因此擁有高效、精準抽取信息深層隱含特征的能力和能夠學習多層的抽象特征表示,且能夠對跨域、多源、異質的內容信息進行學習等優勢,可以一定程度上處理推薦系統稀疏性、新物品、可擴張性等問題,這為推薦系統解決固有問題帶來了新的機遇。

    本文提出了基于深度神經網絡結合多用戶-項目、協同過濾的推薦模型(Multi-View-Collaborative Filtering integrating Deep Neural Network,MV-CFiDNN)[4-6],基于深度神經網絡理論,提取用戶、項目信息的深層隱含特征并自學習、優化提取模型,最后結合多用戶-項目、協同過濾(Collaborative Filtering)提供廣泛的個性化推薦。

1 深度神經網絡推薦模型

    基于深度學習的推薦系統通過將用戶和項目的各類原始數據信息提供給輸入層,在隱含層通過神經網絡學習模型進行用戶、項目的隱特征學習及抽取,最后通過學習隱表示實現用戶、項目推薦[7-8]?;谏疃壬窠浘W絡框架的兩次自學習并結合協同過濾的CFiDNN框架如圖1所示。CFiDNN框架兩大核心為:候選生成網絡融合協同過濾與排名網絡結合協同過濾。

rgzn3-t1.gif

    其中,候選集產生以用戶在瀏覽歷史記錄中的提取特征作為輸入信息,然后基于多源數據庫檢索到與用戶相關的一個數據集,這一數據集就是候選集。這部分候選集通過協同過濾(CF)實現廣泛個性化。再通過用戶、項目的多類特征源學習計算相似性,實現最小排名集,最后基于協同過濾實現推薦。

1.1 候選集生成模塊

    對于候選集生成,首先,將用戶瀏覽及搜索項目等歷史記錄信息映射為向量,然后對其求平均值獲取定長表示;并且,輸入用戶地理信息特征值優化個性化推薦效果,二值性和連續性特征值通過歸一化得到[0,1]范圍。其次,把所有輸入特征值拼接到同一個向量,并且把拼接后的向量輸予激活函數處理。最后,通過神經網絡訓練輸給Softmax進行分類,通過訓練的特征與源項目進行相似度計算,獲取相似度最高的N個項目作為候選模塊中的候選集,圖2為候選生成結構圖。

rgzn3-t2.gif

    基于生成的候選集協同過濾提供廣泛的個性化,組合基于用戶-項目相關度評價實現精準、實時、個性化推薦。

    候選集生成部分是基于多源異構數據庫中學習選擇與用戶相關度較高的項目,對于預測用戶U,其瀏覽某一個信息的概率為:

    rgzn3-gs1.gif

其中,U是用戶特征值,V表示多源異構數據庫,vi表示數據庫中第i個項目的特征值,U與vi向量擁有相等長度,它兩通過點積在隱層全連接實現。

1.2 排序生成模塊

    排序生成結構與候選生成結構類似,區別在于排序生成是對候選生成集升級細致分類排序。與傳統排序抽取特征值類似,神經網絡排序也是通過拼接大量用戶、項目相關特征值(文本ID、瀏覽時長等)。特征值的處理與候選生成類似,都基于向量化,區別在于排序生成網絡最后通過加權邏輯回歸訓練,給前期產生的候選集再評分,評分較高的K個項目返回給用戶或通過協同過濾實現個性化推薦[8-10]。圖3為排序生成結構圖。

rgzn3-t3.gif

    設定部分Softmax分類過程:首先,對于候選生成集或排序生成列表的訓練過程,通過對負樣本類別采用實際類別計算將數量減小到數千;其次,在推薦階段,不計Softmax歸一化,將項目評分轉化為點積空間的最近鄰尋找或協同過濾根據相關度計算;最后,選取與用戶U相關度最高的K項作為候選集或排序列表,然后通過協同過濾個性化推薦,把信息推薦給用戶。

1.3 多用戶—項目模型

    基于多用戶、多項目的多源異構特征結合兩次深度神經網絡學習,從而實現個性化推薦。其實現思想為:首先,將原始特征值向量化后映射為用戶、項目兩個通道;然后利用深度神經網絡模型把用戶、項目信息向量映射到一個隱空間;最后,通過評估相似度(如余弦相似度法)把隱空間的用戶、項目進行相關度等排名、匹配,從而實現精準、個性化推薦。圖4為多用戶-項目DNN(Deep Neural Network)模型結構[11-12]。

rgzn3-t4.gif

    在用戶視角,利用其瀏覽歷史、搜索(Search tokens)、位置信息、二值性(登錄與否、性別)和連續性(年齡)、觀看時長等作為源特征值輸入xu,然后通過深度神經網絡學習模型學習輸出隱表示yu。在項目視角,利用項目的描述、標簽、類型等作為源特征值輸入xi,通過深度神經網絡學習模型學習輸出隱表示yi,其中模型擁有多個用戶、項目,分別為m、N。用戶視角DNN模型為fu(xu,wu),第i個項目視角DNN模型為fi(xi,wi)。若擁有M個樣本{(xu,j,xa,j)},0≤j≤M,(xu,j,xa,j)是用戶u與項目a的交互,利用用戶、項目的擬合交互記錄進行調參學習:

    rgzn3-gs2.gif

    通過模型訓練、學習之后獲得的用戶隱表示yu與項目隱表示yi,利用在隱空間中計算用戶與項目的相關度、排名,選擇相關度排序較高的k項目以及源數據庫協同過濾實現精準、個性化推薦。

1.4 特征值向量化

    特征值向量化是通過詞組嵌入,將特制文本映射到w維空間向量。首先,把用戶、項目所有相關聯特征值分別合并,并對特征值量化為評分數據然后求其平均值,即對多源異構原始數據進行評分式數據處理及歸一化。

    (1)用戶特征數據為:

rgzn3-gs3-5.gif

rgzn3-gs6-10.gif

1.5 全連接層

    全連接層(隱層)輸入數據為用戶、項目源特征值向量化后的值,設隱含層共m個神經元,通過隱含層ReLU激活函數處理后,獲得向量ui,就是用戶useri隱特征值,同理,項目itemj的隱特征值向量為vj,計算過程如下:

rgzn3-gs11-12.gif

1.6 矩陣分解

rgzn3-gs13.gif

    最后,利用Adam深度學習優化方式對預測與真實評分進行擬合[13],對于一些擁有評分的項目,使預測最大可能接近真實,由此學習推薦,對新物品實現個性化推薦(未評分項目預測真實評分無限接近預測值)。

    rgzn3-gs14.gif

2 實驗仿真及分析

2.1 實驗環境

    算法性能分析的實驗環境以Windows Server2012 R2操作系統為實驗支撐,相關配置為:Intel Xeon Silver 4116 CPU處理器,編程語言Python,128 GB內存,雙GPU。編譯環境在Anaconda的Jupyter Notebook中實現并采用MATLAB進行仿真。

2.2 數據集合

    本文通過2個真實、實時數據集,對深度神經網絡融合協同過濾推薦模型進行評估,數據集分別為Amazon Movies and TV(AMT)評論評分與Amazon Clothing(AC)視頻評論、評分。數據包括用戶ID、物品ID及用戶評論、評分。評分值為1~5,值越大用戶喜好度越高。同時,實驗數據按需求進行訓練集TrainSet與測驗集TestSet劃分,且二者沒有交集。

2.3 評價標準

    本文提出的深度神經網絡融合協同過濾推薦模型通過用戶與項目的各類歷史記錄中抽取隱特征,然后對特征值進行學習預判、排序。因此本文應用均方根誤差(RMSE)作為評價此模型的指標,通過學習特征模型與真實特征計算偏差,并求平方,然后與預測數據量N做比值平方根,計算公式如下:

rgzn3-gs15.gif

2.4 實驗對比

    實驗通過3個有效模型進行比較,分別為Probabilistic Matrix Factorization(PMF)、LibMF和DNNMF。

2.5 執行時間對比分析

    深度神經網絡(DNN)推薦算法與傳統協同過濾(CF)運行時間對比:實驗處理數據為AMT、AC真實數據,大小為1.88 GB。深度神經網絡輸入節點為1 024個,隱含層18個,輸出節點1 024個,Spark集群節點為3,比較深度神經網絡訓練與傳統協同過濾處理數據集的耗時。實驗結果如圖5所示,其中user表示用戶測試數據集耗時,item表示商品測試數據集耗時。顯然,DNN執行效率更高。

rgzn3-t5.gif

2.6 實驗結果與分析

    實驗在2個真實數據集下通過本文提出的MV-CFi-DNN模型進行計算評估,同時用RMSE來對模型進行評估預測,在相同實驗環境與同一數據前提下,將MV-CFi-DNN與PMF、LibMF做比較分析。

    參數設置為:用戶、項目特征值權重分別為α=1,β=0.5,MV-CFiDNN模型學習率為lr=0.000 65,用戶、項目隱特征正則化為λuseritem=λ,深度神經網絡神經元數為1 026個。

    為了將MV-CFiDNN模型與PMF、LibMF模型對比,把2個真實數據集隨機分為80%的TrainSet與20%的TestSet,且兩者沒有交集,同時把TestSet中的20%數據集隨機用于驗證,用來調整模型參數。

    從圖6可知,通過在2個真實數據集中測試后,PMF、LibMF的RMSE值相差不大,但與MV-CFiDNN模型的RMSE值有一定差異,表明深度神經網絡融合多用戶-項目、協同過濾模型對于特征值抽取有很好效果。通過實驗結果可以看出,本文提出的深度神經網絡融合多用戶-項目協同過濾模型(MV-CFiDNN)的RMSE值與PMF、LibMF模型比較,都有下降,說明MV-CFiDNN模型能夠解決傳統算法模型的稀疏性、新物品等問題。

rgzn3-t6.gif

3 結束語

    本文通過深度神經網絡融合協同過濾,提出了MV-CFiDNN模型,該模型首先對原數據庫進行深度神經網絡結合協同過濾個性化進行學習、提取特征值然后生成候選集,再對候選集進行二次學習、提取等生成排序集。產生候選集與排序集過程的深度神經網絡學習方法包括輸入層、隱含層及輸出層,其中輸入層是對輸入特征值進行向量化后與用戶、項目權重內積傳輸給隱含層,隱含層根據接收到的值進行調參、重置等神經網絡學習,然后學習、提取的特征值傳遞給輸出層。通過計算得到預測值與真實值擬合。

    未來研究可以通過多種神經網絡結合更多基礎推薦模型,以便使系統實現智能且符合人為思想的精準、個性化推薦。

參考文獻

[1] PENG Y,ZHU W,ZHAO Y,et al.Cross-media analysis and reasoning:advances and directions[J].Frontiers of Information Technology & Electronic Engineering,2017,18(1):44-57.

[2] COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for youtube recommendations[C].Proceedings of the10th ACM Conference on Recommender Systems.ACM,2016:191-198.

[3] LI P,WANG Z,REN Z,et al.Neural rating regression with abstractive tips generation for recommendation[Z].2017.

[4] SONG Y,ELKAHKY A M,HE X.Multi-rate deep learning for temporal recommendation[C].Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2016:909-912.

[5] VASILE F,SMIRNOVA E,CONNEAU A.Meta-Prod2Vec:product embeddings using side-information for recommendation[C].ACM Conference on Recommender Systems.ACM,2016:225-232.

[6] HSIEH C K,YANG L,CUI Y,et al.Collaborative metric learning[C].Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:193-201.

[7] WANG X,HE X,NIE L,et al.Item silk road: recommending items from information domains to social users[Z].2017.

[8] ROY S,GUNTUKU S C.Latent factor representations for cold-start video recommendation[C].Proceedings of the 10th ACM Conference on Recommender Systems.ACM,2016:99-106.

[9] ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C].Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:425-434.

[10] EBESU T,FANG Y.Neural citation network for context-aware citation recommendation[C].International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2017:1093-1096.

[11] Zhang Qi,Wang Jiawen,Huang Haoran,et al.Hashtag recommendation for multimodal microblog using co-attention network[C].IJCAI2017,2017.

[12] WEI J,HE J,CHEN K,et al.Collaborative filtering and deep learning based recommendation system for cold start items[J].Expert Systems with Applications,2017,69:29-39.

[13] WANG S,WANG Y,TANG J,et al.What your images reveal: exploiting visual contents for point-of-interest recommendation[C].Proceedings of the 26th International Conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:391-400.



作者信息:

字云飛,李業麗,孫華艷

(北京印刷學院 信息工程學院,北京102600)

此內容為AET網站原創,未經授權禁止轉載。
热re99久久精品国产66热_欧美小视频在线观看_日韩成人激情影院_庆余年2免费日韩剧观看大牛_91久久久久久国产精品_国产原创欧美精品_美女999久久久精品视频_欧美大成色www永久网站婷_国产色婷婷国产综合在线理论片a_国产精品电影在线观看_日韩精品视频在线观看网址_97在线观看免费_性欧美亚洲xxxx乳在线观看_久久精品美女视频网站_777国产偷窥盗摄精品视频_在线日韩第一页
  • <strike id="ygamy"></strike>
  • 
    
      • <del id="ygamy"></del>
        <tfoot id="ygamy"></tfoot>
          <strike id="ygamy"></strike>
          亚洲精品自在久久| 午夜精品一区二区在线观看| 国产精品一区视频网站| 欧美成人a∨高清免费观看| 性伦欧美刺激片在线观看| 欧美一区二区在线视频| 欧美伊人影院| 亚洲国产日韩综合一区| 欧美成年网站| 国产精品久久久久国产a级| 影音先锋亚洲精品| 在线 亚洲欧美在线综合一区| 亚洲人成网在线播放| 亚洲在线网站| 你懂的视频一区二区| 久久野战av| 国模套图日韩精品一区二区| 先锋影音国产一区| 亚洲国产高清在线| 一区二区激情小说| 午夜精品久久久99热福利| 欧美日韩国产精品一卡| 国产精品国产三级国产aⅴ入口| 久久综合久久综合久久| 欧美精品日日鲁夜夜添| 午夜国产精品视频免费体验区| 亚洲私人影院在线观看| 国产日产亚洲精品系列| 一区二区三区在线观看国产| 欧美激情国产日韩精品一区18| 亚洲香蕉视频| 欧美一二三视频| 狠狠色丁香久久综合频道| 一区二区三区 在线观看视频| 一本久久青青| 欧美一区二区三区四区在线观看地址| 亚洲国产人成综合网站| 国产精品久久久久免费a∨| 久久精品亚洲精品国产欧美kt∨| 激情欧美一区二区三区| 国模套图日韩精品一区二区| 久久久久久成人| 久久久女女女女999久久| 国产亚洲欧美一区在线观看| 亚洲国产欧美一区二区三区丁香婷| 国产一区二区三区在线观看视频| 午夜精品久久久久99热蜜桃导演| 在线欧美电影| 一区二区欧美激情| 国产精品www色诱视频| 欧美在线啊v| 久久久精品视频成人| 日韩亚洲成人av在线| 欧美日韩四区| 国产欧美日本一区二区三区| 亚洲一区二区三区涩| 一区在线观看视频| 欧美人与性动交cc0o| 日韩亚洲欧美在线观看| 一二三区精品福利视频| 亚洲午夜激情| 亚洲国产精品久久久久| 国产欧美日韩综合精品二区| 欧美日韩精品免费观看| 伊人天天综合| 在线亚洲一区| 欧美日韩在线视频观看| 一区二区三区国产| 国产精品激情| 久久亚洲综合色| 久久久久久有精品国产| 国产精品色午夜在线观看| 欧美亚洲日本网站| 国产精品日韩欧美一区二区| 欧美特黄视频| 欧美日韩美女一区二区| 国产欧美一区二区三区沐欲| 欧美亚日韩国产aⅴ精品中极品| 午夜精彩视频在线观看不卡| 亚洲天堂免费在线观看视频| 美女脱光内衣内裤视频久久网站| 亚洲淫性视频| 久久综合网hezyo| 一区二区三区精品久久久| 欧美成人精品1314www| 国产欧美一区二区三区另类精品| 久久爱91午夜羞羞| 亚洲一区二区三区精品在线观看| 伊人狠狠色丁香综合尤物| 亚洲一卡二卡三卡四卡五卡| 欧美 日韩 国产一区二区在线视频| 国产情侣久久| 亚洲人成人77777线观看| 久久免费国产| 欧美一级视频精品观看| 久久成人精品| 欧美凹凸一区二区三区视频| 欧美一级专区免费大片| 久久综合999| 狠狠色狠狠色综合| 亚洲激情成人在线| 激情欧美日韩一区| 亚洲国产精品美女| 91久久夜色精品国产九色| 亚洲国产精品久久精品怡红院| 亚洲色图综合久久| 在线中文字幕一区| 中文日韩在线| 亚洲黄色在线视频| 欧美a级片网| 校园春色综合网| 性感少妇一区| 午夜一区二区三区不卡视频| 国产自产高清不卡| 久久人人97超碰国产公开结果| 欧美啪啪一区| 亚洲欧美视频| 亚洲视频免费在线| 亚洲一区二区视频| 国产精品久久久久久久久免费桃花| 亚洲国产欧美一区二区三区同亚洲| 国产伦精品一区二区| 亚洲精品影视在线观看| 亚洲欧美综合| 欧美人与禽猛交乱配视频| 亚洲免费黄色| 黄色在线一区| 久久成人精品| 亚洲国产精品t66y| 欧美日韩亚洲一区二| 久久久久一区二区三区| 免费日韩成人| 欧美日韩另类国产亚洲欧美一级| 亚洲美女福利视频网站| 国产无遮挡一区二区三区毛片日本| 最新国产成人在线观看| 欧美精品v国产精品v日韩精品| 欧美日韩在线第一页| 激情视频一区二区三区| 亚洲视频一区二区| 国产三级精品三级| 国产精品久久久久久久久果冻传媒| 美女视频黄免费的久久| 欧美国产欧美亚州国产日韩mv天天看完整| 久久精品国产一区二区三区| 午夜伦欧美伦电影理论片| 欧美与欧洲交xxxx免费观看| 久久狠狠久久综合桃花| 在线免费不卡视频| 欧美激情视频一区二区三区不卡| 亚洲美女免费精品视频在线观看| 午夜免费在线观看精品视频| 国产精品自在在线| 中文一区二区| 欧美久久综合| 国产精品爱久久久久久久| 国产精品夜夜夜| 欧美系列精品| 免费成人美女女| 欧美精品亚洲| 国产精品爱久久久久久久| 亚洲黄色免费电影| 欧美一区二区三区四区在线观看地址| 国产精品免费观看在线| 午夜精彩视频在线观看不卡| 伊甸园精品99久久久久久| 国产欧美日本一区视频| 久久精品久久99精品久久| 欧美日韩在线第一页| 香蕉久久精品日日躁夜夜躁| 一区二区高清在线| 国产一区视频在线观看免费| av成人老司机| 亚洲综合另类| 怡红院精品视频| 亚洲国产日韩一区二区| 久久久国产一区二区三区| 欧美一区在线直播| 亚洲女同同性videoxma| 国产深夜精品福利| 亚洲丝袜av一区| 韩国精品久久久999| 欧美三区在线| 亚洲欧美国产精品va在线观看| 久久综合亚州| 久久精品中文字幕免费mv| 亚洲精品精选| 欧美~级网站不卡| 亚洲国产美女精品久久久久∴| 香港久久久电影| 欧美另类久久久品| 亚洲欧美日韩中文在线制服| 亚洲一区欧美激情| 亚洲网站在线观看| 99精品99久久久久久宅男| 久久青青草综合| 国产区精品在线观看| 91久久精品国产91性色| 亚洲国产一成人久久精品| 亚洲欧美视频一区二区三区| 日韩一级欧洲| 午夜精品一区二区三区在线播放| 欧美精品成人一区二区在线观看| 国产欧美精品一区| 欧美精品一区二区高清在线观看| 性欧美video另类hd性玩具| 欧美日韩成人激情| 国产三区二区一区久久| 亚洲激情欧美| 亚洲欧美在线x视频| 国产精品区一区| 亚洲欧美精品中文字幕在线| av成人福利| 国产亚洲成年网址在线观看| 日韩亚洲在线观看| 久久综合国产精品| 欧美激情精品久久久久| 欧美成人乱码一区二区三区| 欧美日韩第一区日日骚| 日韩视频一区二区三区在线播放| 激情久久久久久| 欧美精品三级在线观看| 欧美午夜无遮挡| 亚洲欧洲日产国产综合网| 国产精品无码专区在线观看| 国产精品成人一区二区艾草| 国产日韩精品视频一区| 久久夜色精品国产欧美乱极品| 国产一区二区久久精品| 影院欧美亚洲| 日韩视频不卡中文| 午夜精品偷拍| 欧美一级免费视频| 亚洲欧美一区二区视频| 久久都是精品| 欧美久久久久久久久| 欧美激情国产日韩精品一区18| 在线日韩电影| 国产精品九九久久久久久久| 欧美高清在线一区| 亚洲国产综合91精品麻豆| 麻豆乱码国产一区二区三区| 亚洲女同性videos| 午夜精品久久久久久久| 性久久久久久久久| 欧美一区二区三区男人的天堂| 欧美成人影音| 欧美日韩福利| 精品动漫3d一区二区三区| 午夜影院日韩| 久久精品视频免费| 亚洲国产精品黑人久久久| 一区二区三区日韩精品视频| 极品少妇一区二区| 国产精品久久久久aaaa九色| 亚洲毛片在线观看| 久久美女艺术照精彩视频福利播放| 亚洲国产精品ⅴa在线观看| 亚洲欧美中文在线视频| 欧美日韩亚洲一区二区三区在线观看| 国内揄拍国内精品少妇国语| 欧美婷婷久久| 久久久久久亚洲综合影院红桃| 一区二区三区欧美视频| 亚洲欧美日韩成人高清在线一区| 亚洲国产欧美一区二区三区久久| 国产精品国产三级国产普通话蜜臀| 中文精品一区二区三区| 欧美午夜精品理论片a级按摩| 亚洲日本激情| 老司机免费视频一区二区三区| 久久久精品一区| 99riav1国产精品视频| 99精品国产一区二区青青牛奶| 欧美日产一区二区三区在线观看| 在线综合亚洲欧美在线视频| 国产精品亚洲人在线观看| 欧美精品在线一区二区| 好男人免费精品视频| 在线日韩一区二区| 欧美亚洲综合网| 国产午夜久久| 欧美一区二区啪啪| 精品成人久久| 国产一区免费视频| 99精品国产热久久91蜜凸| 性久久久久久| 在线精品国产欧美| 亚洲伦理在线免费看| 亚洲黄色在线观看| 99在线热播精品免费99热| 国产欧美一区二区三区沐欲| 欧美日韩免费视频| 激情综合色综合久久综合| 欧美在线免费看| 欧美三级乱人伦电影| 欧美在线不卡视频| 亚洲第一福利社区| 亚洲永久免费精品| 日韩视频一区二区三区在线播放免费观看| 中日韩美女免费视频网址在线观看| 国产精品久久久久久久9999| 国产有码一区二区| 欧美日韩在线免费观看| 欧美高清在线视频| 亚洲在线视频| 国产精品二区三区四区| 亚洲国产一区视频| 一本色道久久综合亚洲91| 一本色道久久综合亚洲精品高清| 欧美午夜在线视频| 国产精品jizz在线观看美国| 国产亚洲欧美另类中文| 亚洲精品一品区二品区三品区| 精品不卡一区二区三区| 性8sex亚洲区入口| 久久成人国产| 午夜在线观看免费一区| 国产亚洲欧美日韩在线一区| 一区二区三区精品久久久| 国产综合18久久久久久| 亚洲欧美日韩精品综合在线观看| 亚洲精品字幕| 性久久久久久久| 一区二区不卡在线视频 午夜欧美不卡在| 99视频一区二区三区| 欧美成人四级电影| 亚洲人成毛片在线播放|