《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 解決方案 > 利用噪聲頻譜密度評估軟件定義系統中的ADC

利用噪聲頻譜密度評估軟件定義系統中的ADC

2021-01-02
來源:ADI公司

不斷豐富的高速和極高速ADC以及數字處理產品正使過采樣成為寬帶和射頻系統的實用架構方法。半導體技術進步為提升速度以及降低成本做出了諸多貢獻(比如價格、功耗和電路板面積),讓系統設計人員得以探索轉換和處理信號的各種方法——無論使用具有平坦噪聲頻譜密度的寬帶轉換器,或是使用在目標頻段內具有高動態范圍的帶限Σ-Δ型轉換器。這些技術改變了設計工程師對信號處理的認識,以及他們定義產品規格的方式。

噪聲頻譜密度(NSD)及其在目標頻段內的分布,能夠讓其在數據轉換過程中更好的被濾除.。

比較在不同速度下工作的系統,或者查看軟件定義系統如何處理不同帶寬的信號時,噪聲頻譜密度(NSD)可以說比信噪比(SNR)更為有用。它不能取代其他規格,但會是分析工具箱中的一個有用參數指標。

我的目標頻段內有多少噪聲?

數據轉換器數據手冊上的SNR表示滿量程信號功率與其他所有頻率的總噪聲功率之比。

圖片2.png

圖1. 9 dB調制增益的圖形表示:保留全部信號,丟棄7?8噪聲。

現在考慮一個簡單情況來比較SNR和NSD,如圖1所示。假設ADC時鐘頻率為75 MHz。對輸出數據運行快速傅里葉變換(FFT),圖中顯示的頻譜為從直流到37.5 MHz。本例中,目標信號是唯一的大信號,且碰巧位于2 MHz附近。對于白噪聲(大部分情況下包含量化噪聲和熱噪聲)而言,噪聲均勻分布在轉換器的奈奎斯特頻段內,本例中為直流至37.5 MHz。

由于目標信號在直流與4 MHz之間,故可相對簡單地應用數字后處理以濾除或拋棄一切高于4 MHz的頻率(僅保留紅框中的內容)。這里將需要丟棄7?8噪聲,保留所有信號能量,從而有效SNR改善9 dB。換句話說,如果知道信號位于頻段的一半中,那么事實上可以在僅消除噪聲的同時,丟棄另一半頻段。

這就引出了一條有用的經驗法則:存在白噪聲時,調制增益可使過采樣信號的SNR額外改善3 dB/倍頻程。在圖1示例中,可將此技巧應用到三個倍頻程中(系數為8),從而使SNR改善9 dB。

當然,如果信號處于直流和4 MHz之間某處,那么就不需要使用快速75 MSPS ADC來捕捉信號。只需9 MSPS或10 MSPS便能滿足奈奎斯特采樣定理對帶寬的要求。事實上,可以對75 MSPS采樣數據進行1/8抽取,產生9.375 MSPS有效數據速率,同時保留目標頻段內的噪底。

正確進行抽取很重要。如果只是每8個樣本丟棄7個,那么噪聲會折疊或混疊回到目標頻段內,這樣將得不到任何SNR改善。必須先濾波再抽取,才能實現調制增益。

即便如此,雖然理想的濾波器會消除一切噪聲,實現理想3 dB/倍頻程的調制增益,但實際濾波器不具備此類特性。在實踐中,所需的濾波器阻帶抑制量與試圖實現多少調制增益成函數關系。另外應注意,“3 dB/倍頻程”的經驗法則是基于白噪聲假設。這是一個合理的假設,但并非適用于一切情況。

一個重要的例外情況是動態范圍受非線性誤差或通帶中的其他雜散交調分量影響。在這些情況下,“濾波并丟棄”方法不一定能濾除雜散分量,可能需要更細致的頻率算法。

將SNR和采樣速率轉換為噪聲頻譜密度

當頻譜中存在多個信號時,比如FM頻段內有許多電臺,情況會變得愈加復雜。若要恢復任一信號,更重要的不是數據轉換器的總噪聲,而是落入目標頻段內的轉換器噪聲量。這就需要通過數字濾波和后處理來消除所有帶外噪聲。

有多種方法可以減少落入紅框內的噪聲量。其中一種是選擇具有更好SNR(噪聲更低)的ADC。或者也可以使用相同SNR的ADC并提供更快的時鐘(比如150 MHz),從而讓噪聲分布在更寬的帶寬內,使紅框內的噪聲更少。

NSD進入視野

這就提出了一個新問題:如要快速比較轉換器濾除噪聲的性能,有沒有比SNR更好的規格?

此時就會用到噪聲頻譜密度(NSD)。用頻譜密度(通常以相對于每赫茲帶寬的滿量程的分貝數為單位,即dBFS/Hz)來刻畫噪聲,便可比較不同采樣速率的ADC,從而確定哪個器件在特定應用中可能具有最低噪聲。

表1以一個70 dB SNR的數據轉換器為例,說明隨著采樣速率從100 MHz提高到2 GHz,NSD有何改善。

截圖20210102181539.png

表1.改變一個70 dB SNR的ADC的采樣速率

表2顯示了部分極為不同的轉換器的多種SNR和采樣速率組合,但所有組合都具有相同的NSD,因此每一種組合在1 MHz通道內都將具有相同的總噪聲。注意,轉換器的實際分辨率可能遠高于有效位數,因為很多轉換器希望具有額外的分辨率以確保量化噪聲對NSD的影響可忽略不計。

表2.幾種極為不同的轉換器均在1 MHz帶寬內提供95 dB SNR;SNR計算假定為白噪底(無雜散影響)

截圖20210102181555.png

在一個傳統的單載波系統中,使用10 GSPS轉換器捕捉1 MHz信號似乎很滑稽,但在多載波軟件定義系統中,那可能是設計人員恰恰會做的事情。一個例子是有線機頂盒,其可能采用2.7 GSPS至3 GSPS全頻調諧器來捕捉包含數百電視頻道的有線信號,每個頻道的帶寬為數MHz。對于數據轉換器而言,噪聲頻譜密度的單位通常為dBFS/Hz,即相對于每Hz滿量程的dB。這是一種相對量度,提供了對噪聲電平的某種“折合到輸出端”測量。還有采用dBm/Hz甚至dB mV/Hz為單位來提供更為絕對的量度,即對數據轉換器噪聲的“折合到輸入端”測量。

SNR、滿量程電壓、輸入阻抗和奈奎斯特帶寬也可用來計算ADC的有效噪聲系數,但這涉及到相當復雜的計算,參見ADI公司指南MT-006:“ADC噪聲系數——一個經常被誤解的參數”。

過采樣替代方法

在較高的采樣速率下使用ADC通常意味著較高的功耗——無論是ADC自身抑或后續數字處理。表1顯示過采樣對NSD有好處,但問題依然存在:“過采樣真的值得嗎?”

如表2所示,使用噪聲較低的轉換器也能實現更好的NSD。捕捉多載波的系統需要工作在較高采樣速率下,因此會對每個載波進行過采樣。不過,過采樣仍有很多優勢。

簡化抗混疊濾波——過采樣會將較高頻率的信號(和噪聲)混疊到轉換器的奈奎斯特頻段內.所以為了混疊影響,這些信號需要在AD轉換前被濾波器濾除。這意味著過濾器的過渡帶必須位于最高目標捕捉頻率(FIN)和該頻率的混疊(FSAMPLE、FIN)之間。隨著FIN越來越接近FSAMPLE/2,此抗混疊濾波器的過渡帶變得非常窄,需要極高階的濾波器。2至4倍過采樣可大幅減少模擬域中的這個限制,并將負擔置于相對容易處理的數字域中。

即便使用完美的抗混疊濾波器,要最大程度減少轉換器失真產物折疊的影響也會帶來不足,在ADC中產生雜散和其他失真產物,包括某些極高階諧波。這些諧波還將在采樣頻率內折疊,可能返回帶內,限制目標頻段內的SNR。在較高的采樣速率下,所需頻段成為奈奎斯特帶寬的一小部分,因而降低了折疊發生的概率。值得一提的是,過采樣還有助于可能發生帶內折疊的其他系統雜散(比如器件時鐘源)的頻率規劃。

調制增益對任何白噪聲都有影響,包括熱噪聲和量化噪聲,以及來自某些類型時鐘抖動的噪聲。

隨著速度更高的轉換器和數字處理產品的成熟,系統設計人員更頻繁地使用一定量的過采樣以發揮這些優勢,比如噪底和FFT。 

圖片3.png

圖2. 524,288樣本FFT和8192樣本FFT的ADC 

用戶可能很希望通過檢查頻譜曲線以及查看噪底深度來比較轉換器,如圖2所示。進行此類比較時,重要的是需記住頻譜曲線取決于快速傅里葉變換的大小。較大的FFT會將帶寬分成更多的頻率倉,每個頻率倉內累積的噪聲會變少。這種情況下,頻譜曲線會顯示較低的噪底,但這只是一個繪圖偽像。事實上,噪聲頻譜密度并未發生改變(這是改變頻譜分析儀分辨率帶寬的信號處理等效情況)。

最終,如果采樣速率等于FFT大小(或者成適當比例),那么比較噪底是可以接受的,否則可能產生誤解。這里,NSD規格可用于直接比較。

當噪底不平坦時

到目前為止,關于調制增益和過采樣的討論都假設噪聲在轉換器的奈奎斯特頻帶內是平坦的。這在很多情況下是一個合理的近似,但也有某些情況不適用該假設。

例如,之前已經提到調制增益并不適用于雜散,雖然過采樣系統在頻率規劃和雜散處理方面可能有一些優勢。此外,1/f噪聲和部分類型的振蕩器相位噪聲具有頻譜整形性能,調制增益計算不適用于此類情況。

 

圖片4.png

圖3.目標頻段和噪聲整形

噪聲不平坦的一個重要情形是使用Σ-Δ型轉換器時。

Σ-Δ型調制器通過對反饋回路(量化器輸出)調制,進而實現對量化噪聲整形,,從而降低目標頻段內的噪聲,但代價是增加帶外噪聲,如圖3所示。

 

即使不進行完整分析,也可以看到,對于Σ-Δ型調制器,使用NSD作為確定帶內可用動態范圍的規格尤為有效。圖4顯示的是高速帶通Σ-Δ型ADC放大后的噪底曲線。在75 MHz目標頻段內(中心頻率為225 MHz),噪聲為-160 dBFS/Hz左右,SNR超過74 dBFS。

圖片5.png

圖4.AD6676—噪底

一個總結性范例

為了總結并強化我們已經討論過的內容,現在看圖5所示曲線。本例考慮五款ADC:一款12位、2.5 GSPS ADC(紫色曲線);一款14位、1.25 GSPS ADC,時鐘速度分別為500 MSPS(紅色曲線);和1 GSPS(綠色曲線);一款14位、3 GSPS ADC,時鐘速度為3 GSPS(灰色曲線);一款不同的14位、500 MSPS ADC,時鐘速度為500 MSPS(藍色曲線);最后是圖4提到的帶通Σ-Δ型ADC。前五種情況的特征是具有近乎白色(平坦)的噪底,而Σ-Δ型ADC具有浴盆形噪聲頻譜密度,在目標頻段內的噪聲很低,如圖4所示。

在每種情況中,采樣速率保持固定,通過改變數字濾波器(其移除數字化處理后的帶外噪聲)的截止頻率來掃描信號帶寬。由此可得出幾點結論。

首先,降低信號帶寬會提高動態范圍。然而,紫色、紅色和綠色直線的斜率始終為3 dB/倍頻程,因為其NSD曲線是平坦的。藍色曲線的斜率(Σ-Δ型ADC)則相當陡峭。當在通道的陡坡上掃描抽取濾波器的截止頻率時,上述現象尤其明顯,因為該頻率的每次遞增/遞減都會導致濾除的噪聲功率量迅速變化。

其次,各曲線具有不同的垂直偏移,這取決于轉換器的NSD。例如,紅色和綠色曲線對應相同的ADC。但綠色曲線(1 GSPS)高于紅色曲線(500 MSPS),因為其NSD比其他情況低3 dB/Hz,其時鐘是紅色曲線的兩倍。

圖5顯示了多種不同高速ADC的SNR與信號帶寬的權衡關系:五個斜率遵從平坦噪底的3 dB/倍頻程調制增益,而AD6676由于噪底整形而表現出更陡的調制增益。

 

圖片6.png

圖5.不同ADC的SNR與信號帶寬的關系 

結語

不斷豐富的高速和極高速ADC以及數字處理產品正使過采樣成為寬帶和射頻系統的實用架構方法。半導體技術進步為提升速度以及降低成本做出了諸多貢獻(比如價格、功耗和電路板面積),讓系統設計人員得以探索轉換和處理信號的各種方法——無論使用具有平坦噪聲頻譜密度的寬帶轉換器,或是使用在目標頻段內具有高動態范圍的帶限Σ-Δ型轉換器。這些技術改變了我們對信號處理的認識,以及我們定義產品規格的方式。思考如何捕捉信號時,工程師可能會想到去比較在不同速度下工作的系統。進行這類比較,或者查看軟件定義系統如何處理不同帶寬的信號時,噪聲頻譜密度可以說比SNR更為有用。它不能取代其他規格,但會是規格列表上非常有用的一個目。

參考文獻

MT-006:“ADC噪聲系數——一個經常被誤解的參數”。ADI公司,2014年。

作者簡介

David H. Robertson自1985年從達特茅斯學院畢業后,便一直在ADI公司數據轉換器部門工作。他從事過采用互補雙極性、BiCMOS和CMOS工藝的各類高速DAC和ADC設計。他與美國、愛爾蘭、韓國、日本和中國的產品開發團隊合作,歷任產品工程師、設計工程師、產品線總監和模擬技術副總裁。David目前是ADI公司高速轉換器部門的產品與技術總監。

David擁有15項轉換器和混合信號電路方面的專利,參加過兩次“最佳小組”國際固態電路會議晚間小組談話,是榮獲《IEEE固態電路雜志》1997最佳論文獎的論文的合著者。他從2000年至2008年擔任ISSCC技術計劃委員會委員,并在2002年至2008年期間擔任模擬與數據轉換器小組委員會主席。

Gabriele Manganaro擁有意大利卡塔尼亞大學工程博士學位。1994年始,他在意法半導體和德克薩斯農工大學做過研究工作。后在德州儀器做過數據轉換器IC設計,并擔任過國家半導體(美國)設計總監。自2010年起,他擔任ADI公司高速數據轉換器工程總監。他曾連續7年擔任ISSCC數據轉換器技術小組委員會委員。他先后擔任過《IEEE電路與系統論文集》的副編輯、副主編和主編。他已撰寫或合作撰寫60篇論文及3本著作(其中最著名的是2011年劍橋大學出版社出版的《高級數據轉換器》),并擁有15項美國專利(及相應的歐洲和日本專利)和其他申請中的專利。他還是多個科學獎項的獲得者,包括英國盧瑟福阿普爾頓實驗室的1995年CEU獎、1999年IEEE電路與系統杰出青年作者獎、2007年IEEE歐洲固態電路會議最佳論文獎。他是IEEE院士(自2016年起)、IET院士(自2009年起)、Sigma Xi會員以及IEEE電路與系統協會理事會成員(2016 – 2018)。

 

 

 


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
热re99久久精品国产66热_欧美小视频在线观看_日韩成人激情影院_庆余年2免费日韩剧观看大牛_91久久久久久国产精品_国产原创欧美精品_美女999久久久精品视频_欧美大成色www永久网站婷_国产色婷婷国产综合在线理论片a_国产精品电影在线观看_日韩精品视频在线观看网址_97在线观看免费_性欧美亚洲xxxx乳在线观看_久久精品美女视频网站_777国产偷窥盗摄精品视频_在线日韩第一页
  • <strike id="ygamy"></strike>
  • 
    
      • <del id="ygamy"></del>
        <tfoot id="ygamy"></tfoot>
          <strike id="ygamy"></strike>
          99国产麻豆精品| 亚洲一区二区三区四区五区黄| 国产精品高清在线| 亚洲精品久久久久久久久| 狠色狠色综合久久| 国产日韩亚洲| 日韩视频免费大全中文字幕| 激情久久久久久久久久久久久久久久| 99精品免费视频| 国产精品一区久久久久| 亚洲欧美日韩视频一区| 中日韩美女免费视频网址在线观看| 亚洲一级免费视频| 亚洲先锋成人| 欧美xart系列高清| 国产精品家庭影院| 一个色综合导航| 欧美一区二区| 久久精品在线视频| 伊人色综合久久天天五月婷| 亚洲成人原创| 亚洲精品一区二区三区99| 欧美成人综合| 国产精品久久久久9999| 亚洲最新视频在线播放| 国产精品免费看久久久香蕉| 欧美与黑人午夜性猛交久久久| 国产欧美日韩另类一区| 一区二区三区偷拍| 欧美日韩精品一区二区三区| 亚洲一区二区三区视频播放| 欧美成人精品不卡视频在线观看| 亚洲视频在线播放| 国产精品久久久久aaaa九色| 影视先锋久久| 国产欧美一区二区三区久久| 欧美日韩免费观看一区二区三区| 欧美大片在线看| 久久午夜羞羞影院免费观看| 一本一本久久a久久精品综合麻豆| 99国产成+人+综合+亚洲欧美| 久久国产色av| 国产一区二区三区久久| 久久国产视频网站| 精品999在线播放| 亚洲在线视频| 亚洲欧美日韩中文视频| 久久久国产亚洲精品| 久久精品国产在热久久| 亚洲永久免费av| 国产麻豆精品theporn| 欧美在线观看日本一区| 欧美一级久久久久久久大片| 亚洲欧美综合另类中字| 亚洲永久网站| 欧美精品一区二区三区久久久竹菊| 亚洲一级二级在线| 最新国产拍偷乱拍精品| 亚洲高清av在线| 亚洲影院色在线观看免费| 国产精品久久久久毛片大屁完整版| 一本一本久久a久久精品综合妖精| 羞羞色国产精品| 99亚洲伊人久久精品影院红桃| 免费观看欧美在线视频的网站| 老司机一区二区三区| 欧美激情免费观看| 欧美亚洲尤物久久| 久久精品一区中文字幕| 国产一区二区三区视频在线观看| 亚洲一区三区电影在线观看| 蜜桃av噜噜一区二区三区| 亚洲一区二区三区精品动漫| 亚洲少妇自拍| 欧美精品成人91久久久久久久| 一区在线观看视频| 国产精品青草久久| 国产女主播一区二区| 日韩视频免费大全中文字幕| 亚洲视频成人| 欧美精品高清视频| 亚洲视频国产视频| 在线视频欧美精品| 狠狠色丁香久久婷婷综合丁香| 亚洲免费人成在线视频观看| 国产精品毛片高清在线完整版| 国模精品一区二区三区| 久久久久看片| 亚洲最新在线| 欧美午夜性色大片在线观看| 日韩视频在线一区| 免费在线看一区| 国产精品自拍在线| 伊人久久婷婷色综合98网| 国产一区二区欧美日韩| 欧美激情视频在线播放| 亚洲欧美日韩高清| 最新国产成人在线观看| 在线观看国产欧美| 国产精品青草久久久久福利99| 欧美在线免费看| 欧美韩日一区二区| 久久久久久尹人网香蕉| 亚洲美女av电影| 欧美专区中文字幕| 欧美怡红院视频| 国产精品专区第二| 一区二区三区成人精品| 99视频在线观看一区三区| 亚洲精品在线三区| 欧美综合激情网| 久久中文字幕导航| 美日韩精品视频免费看| 欧美在线黄色| 欧美国产亚洲另类动漫| 国产一区二区视频在线观看| 免费一区二区三区| 亚洲欧美清纯在线制服| 亚洲已满18点击进入久久| 国产亚洲精品成人av久久ww| 欧美日韩高清在线| 欧美日韩一级大片网址| 精品不卡视频| 亚洲高清资源综合久久精品| 久久久久久久欧美精品| 国产精品久久国产三级国电话系列| **网站欧美大片在线观看| 久久久水蜜桃| 欧美日韩在线三级| 今天的高清视频免费播放成人| 亚洲一二三四区| 91久久精品一区二区别| 欧美日韩精品一区二区三区| 亚洲自啪免费| 国产日韩欧美综合一区| 国产综合第一页| 国产精品成人一区二区网站软件| 一本久道久久综合婷婷鲸鱼| 欧美一区二区三区另类| 国产日韩亚洲| 黄色国产精品一区二区三区| 亚洲一区二区三区在线播放| 国产色婷婷国产综合在线理论片a| 麻豆成人在线观看| 欧美精品在线一区二区三区| 黄色在线一区| 国产精品久久久久久久久久ktv| 欧美国产一区二区在线观看| 欧美va日韩va| 欧美日韩一区二区三区在线视频| 国产九九精品视频| 一区二区亚洲欧洲国产日韩| 欧美日韩亚洲另类| 国产精品国产三级国产专播精品人| 国产一区二区三区在线播放免费观看| 宅男噜噜噜66一区二区66| 亚洲永久免费精品| 亚洲第一精品在线| 亚洲一区影音先锋| 欧美在线精品免播放器视频| 亚洲国产成人午夜在线一区| 9i看片成人免费高清| 伊人久久综合97精品| 艳妇臀荡乳欲伦亚洲一区| 欧美人妖在线观看| 国产午夜精品一区二区三区视频| 亚洲日本精品国产第一区| 国产视频欧美| 国产乱码精品一区二区三区五月婷| 亚洲天堂网在线观看| 国产免费成人在线视频| 欧美日韩高清区| 亚洲免费在线看| 欧美一级专区免费大片| 翔田千里一区二区| 欧美激情一区在线| 国产精自产拍久久久久久| 欧美日韩卡一卡二| 性高湖久久久久久久久| 久久av最新网址| 最新国产乱人伦偷精品免费网站| 国产一区日韩一区| 亚洲精品国产欧美| 午夜国产不卡在线观看视频| **性色生活片久久毛片| 一区二区三区欧美视频| 亚洲麻豆视频| 一区二区三区四区国产| 麻豆视频一区二区| 亚洲高清精品中出| 国产伦精品一区二区三区在线观看| 国产精品99久久久久久人| 亚洲欧美日韩国产一区二区三区| 久久激情视频久久| 久久综合图片| 欧美伊人久久大香线蕉综合69| 国产视频在线观看一区二区三区| 欧美亚洲在线观看| 亚洲自拍都市欧美小说| 模特精品裸拍一区| 制服丝袜亚洲播放| 欧美日韩亚洲国产一区| 欧美另类人妖| 欧美亚洲成人免费| 欧美福利电影网| 亚洲区一区二区三区| 亚洲香蕉在线观看| 亚洲激情二区| 国产一区二区黄| 黄色av日韩| 国产日本亚洲高清| 国产精品成人v| 欧美伦理视频网站| 国产区二精品视| 国产主播精品| 日韩视频一区| 亚洲精品韩国| 久久综合伊人77777| 欧美精品久久99| 亚洲一区二区精品视频| 国产亚洲高清视频| 午夜久久电影网| 99精品国产热久久91蜜凸| 日韩亚洲欧美精品| 久久丁香综合五月国产三级网站| 一本久道久久综合中文字幕| 国产精品国产自产拍高清av| 国内成+人亚洲| 国产一区二区三区自拍| 久久夜色精品国产欧美乱极品| 亚洲乱码日产精品bd| 蜜乳av另类精品一区二区| 国内成人在线| 在线视频精品一| 国产亚洲精品bv在线观看| 欧美三级中文字幕在线观看| 亚洲精品国产精品国产自| 日韩一区二区福利| 亚洲人成毛片在线播放女女| 国内久久视频| 亚洲啪啪91| 国产日韩欧美在线| 久久亚洲综合色| 欧美性色综合| 激情综合激情| 久久精品一区二区三区不卡| 国产亚洲欧洲一区高清在线观看| 亚洲国产第一| 99热精品在线观看| 久久人91精品久久久久久不卡| 夜夜嗨av一区二区三区| 国产精品视频免费观看www| 久久成人人人人精品欧| 99国产精品自拍| 性做久久久久久久久| 欧美亚洲一级片| 亚洲国产高清在线| 亚洲精品久久久久久久久| 亚洲一区二区三区四区视频| 国产精品乱子久久久久| 欧美日韩免费观看一区| 鲁大师成人一区二区三区| 免费成人黄色| 在线观看一区二区视频| 亚洲精品你懂的| 欧美日韩激情网| 性久久久久久久久久久久| av成人动漫| 欧美日韩一区二区三区在线| 欧美一区二区视频在线观看2020| 国产一区日韩一区| 欧美日韩一区不卡| 国产精品久久久久免费a∨大胸| 国产精品久久久久久亚洲毛片| 久久频这里精品99香蕉| 一区二区欧美激情| 欧美激情精品久久久久久黑人| 亚洲欧洲日产国码二区| 亚洲精品一区二区三区在线观看| 亚洲精品视频免费在线观看| 欧美日韩精品欧美日韩精品| 国产精品扒开腿爽爽爽视频| 黄色精品一区二区| 欧美午夜免费电影| 在线观看视频免费一区二区三区| 在线观看91精品国产麻豆| 一本色道88久久加勒比精品| 日韩视频国产视频| 国产亚洲欧洲997久久综合| 午夜久久久久久久久久一区二区| 欧美伊人久久大香线蕉综合69| 亚洲免费成人av| 国产精品成人一区二区艾草| 国产精品一香蕉国产线看观看| 欧美精品二区三区四区免费看视频| 亚洲日韩欧美视频一区| 一本色道久久综合亚洲精品婷婷| 韩国av一区二区三区四区| 亚洲人成人一区二区在线观看| 麻豆亚洲精品| 精品成人一区| 亚洲国产精品久久精品怡红院| 亚洲福利免费| 国产精品一区一区| 香蕉久久久久久久av网站| 欧美日韩国产精品一区| 欧美xart系列高清| 激情成人在线视频| 国产精品久久久久久户外露出| 在线观看欧美视频| 久久aⅴ乱码一区二区三区| 久久精品夜色噜噜亚洲aⅴ| 国产一区二区三区四区五区美女| 欧美日韩视频在线一区二区| 久久久精品动漫| ●精品国产综合乱码久久久久| 久久夜色精品国产欧美乱| 女女同性女同一区二区三区91| 欧美色综合天天久久综合精品| 日韩午夜电影av| 国产精品嫩草影院av蜜臀| 亚洲成人资源| 永久免费视频成人| 亚洲国产aⅴ天堂久久| 亚洲欧美一区在线| 国产人成精品一区二区三| 国产精品日韩二区| 女女同性女同一区二区三区91|